Mechanistic Insight into the Effect of Polymer and NOM Coatings on Adhesion and Interactions between Nanoparticles and Bacteria

نویسنده

  • Zhiqiang Li
چکیده

Engineered nanomaterials may be released to the environment and adversely affect the microbial community. Three generalized modes of interaction between NPs and bacteria that lead to observed toxicity are commonly described: physical contact between nanoparticles and cells (Type I), production of reactive oxygen species (ROS) (Type II), and release of toxic metal ions (Type III). Previous studies demonstrated that polymeric coatings and natural organic matter (NOM) may reduce antibacterial activities of nanoparticles. Thus, application of coatings is a mean to mitigate nanoparticle toxicity. However, coatings may have different effects depending on the mode of interaction between the NP and bacteria and the toxicity mechanism. The reasons for the different effects of coatings observed on nanoparticles having these different modes are still unclear. The primary objectives of this thesis are (i) to assess the effect that organic macromolecular coatings such as synthetic polymers and natural organic matter have on nanoparticle-microorganism interactions with type I, II, and III mode of action, and (ii) to determine the reasons for these effects. NZVI (type I), nano-TiO 2 (type II), and AgNPs (type III) were studied as representative nanoparticles. Poly(styrene sulfonate) (PSS), polyaspartate (PAP), humic acid, and carboxy methyl cellulose (sodium salt) (CMC) were used to coat nanoparticles. E. coli was exposed to bare and coated nanoparticles, and the bacterial concentration was determined at specific times using a plate counting technique. By observing different effects for the same coating on each type of nanoparticle, conclusions are made regarding iii the exact nature by which the adsorbed coatings (or in soluition) are affecting the observed growth inhibition of E. coli (toxicity).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying the Effect of Montmorillonite Nanoclay on Mechanical Properties and the Amount of Nanoclay on Epoxy Siloxane Hybrid Coatings

Create three-dimensional network of siloxane polymer in the epoxy resin is an appropriate mechanical properties .Dispersion of nanoclay in these coating was prepared by ultrasonication method. Mechanical properties of nanocomposit coatings such as abrasion, hardness and adhesion was increased by addition of nanoclay montmorillonite. Different percentages of nanoclay in coating showed that even ...

متن کامل

Effect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates

The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...

متن کامل

Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one ...

متن کامل

Effect of Graphene Oxide Decorated With Synthesized Nano-CeO2 on Barrier Properties of Epoxy Anticorrosion Coatings

In this paper, graphene oxide decorated with cerium oxide (CeO2) nanoparticles was prepared and used as anticorrosive pigments in epoxy nanocomposite coatings. The synthesized nanoparticle was characterized by FTIR, XRD, SEM, and EDX analyses. Graphene oxide decorated with CeO2 nanoparticles was dispersed in epoxy resin by sonication. The optimum nanoparticle content of th...

متن کامل

Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites

Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011